Exact solutions in log-concave maximum likelihood estimation
نویسندگان
چکیده
We study probability density functions that are log-concave. Despite the space of all such densities being infinite-dimensional, maximum likelihood estimate is exponential a piecewise linear function determined by finitely many quantities, namely values, or heights, at data points. explore in what sense exact solutions to this problem possible. First, we show heights given generically transcendental. For cell one dimension, estimator expressed closed form using generalized W-Lambert function. Even more, finding log-concave equivalent solving collection polynomial-exponential systems special form. case two equations, very little known about these systems. As an alternative, use Smale's alpha-theory refine approximate numerical and certify estimation.
منابع مشابه
Maximum likelihood estimation of a multi- dimensional log-concave density
Let X1, . . . ,Xn be independent and identically distributed random vectors with a (Lebesgue) density f. We first prove that, with probability 1, there is a unique log-concave maximum likelihood estimator f̂n of f. The use of this estimator is attractive because, unlike kernel density estimation, the method is fully automatic, with no smoothing parameters to choose. Although the existence proof ...
متن کاملSmoothed log-concave maximum likelihood estimation with applications
We study the smoothed log-concave maximum likelihood estimator of a probability distribution on Rd. This is a fully automatic nonparametric density estimator, obtained as a canonical smoothing of the log-concave maximum likelihood estimator. We demonstrate its attractive features both through an analysis of its theoretical properties and a simulation study. Moreover, we use our methodology to d...
متن کاملMaximum Likelihood Estimation in Log-linear
We study maximum likelihood estimation in log-linear models under conditional Poisson sampling schemes. We derive necessary and sufficient conditions for existence of the maximum likelihood estimator (MLE) of the model parameters and investigate estimability of the natural and mean-value parameters under a nonexistent MLE. Our conditions focus on the role of sampling zeros in the observed table...
متن کاملMaximum Likelihood Estimation in Log - Linear Models
We study maximum likelihood estimation in log-linear models under conditional Poisson sampling schemes. We derive necessary and sufficient conditions for existence of the maximum likelihood estimator (MLE) of the model parameters and investigate estimability of the natural and mean-value parameters under a non-existent MLE. Our conditions focus on the role of sampling zeros in the observed tabl...
متن کاملLogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-Concave Density
In this document we introduce the R package LogConcDEAD (Log-concave density estimation in arbitrary dimensions). Its main function is to compute the nonparametric maximum likelihood estimator of a log-concave density. Functions for plotting, sampling from the density estimate and evaluating the density estimate are provided. All of the functions available in the package are illustrated using s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2023
ISSN: ['1090-2074', '0196-8858']
DOI: https://doi.org/10.1016/j.aam.2022.102448